Exam II, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points) Let $A=\left[\begin{array}{lll}1 & b & 4 \\ a & 3 & 1 \\ 4 & c & 0\end{array}\right]$. Given A is row-equivalent to $\left[\begin{array}{lll}0 & 0 & 2 \\ 2 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(i) Find the values of b, a, c. Trivial/ Ideas discussed in class
(ii) Find a basis for the column space of A. Trivial

QUESTION 2. (10 points) Let $S=\{(a+b+2 c, 3 a+6 c, 2 a-b+4 c) \mid b, c \in R\}$. Is S a subspace of R^{3} ? explain. If yes, find $\operatorname{dim}(\mathrm{A})$, find basis for A, and write A as a span of a basis. Trivial/ basic question

QUESTION 3. (10 points)

(i) Find a basis for P_{4} such that each element in the basis is of degree 3. Show the work. some thinking is involved here, so we need 4 INDEPENDENT polynomials each is of degree 3 . As you translate to points in R^{4} (assume polynomials are written in descending order according to their degree), so we need to form a matrix 4×4 such that all entries in the first column are 1 (to ensure getting polynomials each of degree 3). Now you stare at the matrix and choose the other entries so that when you change it to semi-echelon all rows survive. For example Take the matrix $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$. Now by staring at $A, \operatorname{det}(A) \neq 0$. So all rows are independent (or change it to semi-echelon/ all rows will survive). Now translate back to polynomials: so $x^{3}, x^{3}+x^{2}, x^{3}+x, x^{3}+1$ is the desired basis.
(ii) Let $f_{1}, f_{2}, f_{3}, f_{4}$ be polynomial in P_{4} such that each is of degree 2 . Show that $f_{1}, f_{2}, f_{3}, f_{4}$ are dependent.

This is supposed to be a trivial one, note that f_{1}, \ldots, f_{4} are elements of P_{3} as well. Since $\operatorname{dim}\left(P_{3}\right)=3$, every 4 elements in P_{3} are dependent

QUESTION 4. (12 points) TYPICAL BASIC QUESTION/ SEE CLASS NOTES
a) Let $A=\left\{F \in R^{3 \times 3} \mid \operatorname{Rank}(F) \leq 2\right\}$. Then A is not a subspace of $R^{3 \times 3}$. Why?
b) Let $A=\{(a, b, c) \mid a+2 b+c=4\}$. Then A is not a subspace of R^{3}. Why?
c) Let $A=\left\{f(x) \in P_{4} \mid f(2)=0\right.$ or $\left.f(3)=0\right\}$. Then A is not a subspace of P_{4}. Why?
d) Let $A=\left\{F \in R^{3 \times 3} \mid \operatorname{det}(A)=0\right\}$. Then A is not a subspace of $R^{3 \times 3}$. Why?

QUESTION 5. a) (10 points) Let $F=\left\{A \in R^{2 \times 2}\right.$ such that $\left.A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$. Show that F is a subspace of $R^{2 \times 2}$. Then find a basis for F. Done in class/ see your notes
b) (6 points) Given $\mathrm{L}=\{A, B, C, D\}$ is a basis for $R^{2 \times 2}$, where $A=\left[\begin{array}{cc}2 & 4 \\ -2 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & -4 \\ 2 & -5\end{array}\right]$. Find C and D. Note that C and D are not unique. Show the work

Here is the idea: We need to form a matrix $F, 4 \times 4$, with 4 independent rows. Of course the first two rows are A and B. Now stare at F add two more rows so that when you change F to the semi-echelon all rows survive. After you do that, translate each row of the two rows you added to an 2×2 matrix.

QUESTION 6. (12 points) Given A is a 2×2 matrix such that $3,-3$ are eigenvalues of $A, E_{3}=\operatorname{span}\{(4,2)\}$, and $E_{-3}=\operatorname{span}\{(-2,0)\}$.
(i) Find the trace of A^{-1}. basic/ see class notes
(ii) Show that A^{2} is a diagonalizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1} A^{2} W=D$. basic
(iii) Show that A^{T} is diagnolizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1} A^{T} W=D$. Since $F^{-1} A F=D, F^{T} A^{T}\left(F^{-1}\right)^{T}=D^{T}$. Now here $W=\left(F^{-1}\right)^{T}$.
(iv) Find a nonzero 2×4 matrix D such that $A D=3 D$. by matrix multiplication, let $d_{1}, d_{2}, d_{3}, d_{4}$ be the columns of D. Then $A d_{1}=3 d_{1}, A d_{2}=3 d_{2}, \ldots, A d_{4}=3 d_{4}$. By staring at the question and knowing 3 is an eigenvalue of $A /$ all these columns must come from E_{3}. Choose all column of D from E_{3} and we are done.

QUESTION 7. (18 points) Let A be a 3×3 matrix such that $C_{A}(x)=x(x-5)^{2}$. Given $N u l(A)=\left\{\left(x_{1}, 2 x_{1}, 0\right) \mid x_{1} \in R\right\}$ and $N u l\left(5 I_{3}-A\right)=\left\{\left(3 x_{3}, 0, x_{3}\right) \mid x_{3} \in R\right\}$,
(i) find $\operatorname{det}(A)$.
(ii) Is A diagnolizable? if yes, find a diagonal matrix D and an invertible matrix W such that $W^{-1} A W=D$. If no, explain. No. Since $\operatorname{dim}\left(E_{5}\right)=1$ but 5 has multiplicaty 2. Note $N u l(A)=N u l(-A)=E_{0}$ and $N u l\left(5 I_{3}-A\right)=$ E_{5}
(iii) Find Trace of A. Adding eigenvalues with multiplicaty. So 5+5+0=10
(iv) Find $\operatorname{det}\left(A-2 I_{3}\right)$. We know eigenvalues of $A-2 I_{3}$ are $\mathbf{0 - 2 , 5 - 2 , 5 - 2}$. Multiply them we get -18
(v) Let $D=A+11 I_{3}$. Find a nonzero point in R^{3}, say $v=(a, b, c)$, such that $D\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}11 a \\ 11 b \\ 11 c\end{array}\right]$ Since 0 is an egivalue of A choose a nonzero point v in $\operatorname{Nul}(A)=E_{0}$. Since $A v=0 v=0$, we have $D v=\left(A+11 I_{3}\right) v=A v+11 v=$ $0+11 v=11 v$.
(vi) Given $F=\left[\begin{array}{lll}a & b & \pi \\ c & d & e \\ \sqrt{3} & 8 & f\end{array}\right]$ such that $A F=5 F$. Find all entries of F. What is the rank of F. The same idea as in \mathbf{V}. So the column of F must come from E_{5}. So set the first column of $F,(a, c, \sqrt{3})=\left(3 x_{3}, 0, x_{3}\right)$. We get $x_{3}=\sqrt{3}, \mathbf{c}=\mathbf{0}$ and $a=3 x_{3}=3 \sqrt{3}$, now do similar for column II and column III. Since all columns of F are coming from E_{5} and $\operatorname{dim}\left(E_{5}\right)=1, \operatorname{Rank}(\mathbf{F})=\mathbf{1}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

