--, ID ----

MTH 221 Linear Algebra Spring 2015, 1–2

Exam II, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points) Let
$$A = \begin{bmatrix} 1 & b & 4 \\ a & 3 & 1 \\ 4 & c & 0 \end{bmatrix}$$
. Given A is row-equivalent to $\begin{bmatrix} 0 & 0 & 2 \\ 2 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

(i) Find the values of b, a, c. Trivial/ Ideas discussed in class

(ii) Find a basis for the column space of A. Trivial

QUESTION 2. (10 points) Let $S = \{(a + b + 2c, 3a + 6c, 2a - b + 4c) | b, c \in R\}$. Is S a subspace of R^3 ? explain. If yes, find dim(A), find basis for A, and write A as a span of a basis. Trivial/basic question

QUESTION 3. (10 points)

(i) Find a basis for P_4 such that each element in the basis is of degree 3. Show the work. some thinking is involved here, so we need 4 INDEPENDENT polynomials each is of degree 3. As you translate to points in R^4 (assume polynomials are written in descending order according to their degree), so we need to form a matrix 4×4 such that all entries in the first column are 1 (to ensure getting polynomials each of degree 3). Now you stare at the matrix and choose the other entries so that when you change it to semi-echelon all rows survive. For example

Take the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$. Now by staring at A, $det(A) \neq 0$. So all rows are independent (or change

it to semi-echelon/ all rows will survive). Now translate back to polynomials: so x^3 , $x^3 + x^2$, $x^3 + x$, $x^3 + 1$ is the desired basis.

(ii) Let f_1, f_2, f_3, f_4 be polynomial in P_4 such that each is of degree 2. Show that f_1, f_2, f_3, f_4 are dependent.

This is supposed to be a trivial one, note that $f_1, ..., f_4$ are elements of P_3 as well. Since $dim(P_3) = 3$, every 4 elements in P_3 are dependent

QUESTION 4. (12 points) TYPICAL BASIC QUESTION/ SEE CLASS NOTES

a) Let $A = \{F \in \mathbb{R}^{3 \times 3} \mid Rank(F) \leq 2\}$. Then A is not a subspace of $\mathbb{R}^{3 \times 3}$. Why?

b) Let $A = \{(a, b, c) \mid a + 2b + c = 4\}$. Then A is not a subspace of \mathbb{R}^3 . Why?

c) Let $A = \{f(x) \in P_4 \mid f(2) = 0 \text{ or } f(3) = 0\}$. Then A is not a subspace of P_4 . Why?

d) Let $A = \{F \in \mathbb{R}^{3 \times 3} \mid det(A) = 0\}$. Then A is not a subspace of $\mathbb{R}^{3 \times 3}$. Why?

QUESTION 5. a) (10 points) Let $F = \{A \in \mathbb{R}^{2 \times 2} \text{ such that } A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}$. Show that *F* is a subspace of $\mathbb{R}^{2 \times 2}$. Then find a basis for *F*. **Done in class/ see your notes** b) (6 points) Given $L = \{A, B, C, D\}$ is a basis for $\mathbb{R}^{2 \times 2}$, where $A = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -4 \\ 2 & -5 \end{bmatrix}$. Find *C* and *D*.

Note that C and D are not unique. Show the work

Here is the idea: We need to form a matrix F, 4×4 , with 4 independent rows. Of course the first two rows are A and B. Now stare at F add two more rows so that when you change F to the semi-echelon all rows survive. After you do that, translate each row of the two rows you added to an 2×2 matrix.

QUESTION 6. (12 points) Given A is a 2 × 2 matrix such that 3, -3 are eigenvalues of A, $E_3 = span\{(4,2)\}$, and $E_{-3} = span\{(-2,0)\}$.

(i) Find the trace of A^{-1} . basic/ see class notes

- (ii) Show that A^2 is a diagonalizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1}A^2W = D$. **basic**
- (iii) Show that A^T is diagonalizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1}A^TW = D$. Since $F^{-1}AF = D$, $F^TA^T(F^{-1})^T = D^T$. Now here $W = (F^{-1})^T$.
- (iv) Find a nonzero 2×4 matrix D such that AD = 3D. by matrix multiplication, let d_1, d_2, d_3, d_4 be the columns of D. Then $Ad_1 = 3d_1$, $Ad_2 = 3d_2$, ..., $Ad_4 = 3d_4$. By staring at the question and knowing 3 is an eigenvalue of A/ all these columns must come from E_3 . Choose all column of D from E_3 and we are done.

QUESTION 7. (18 points) Let A be a 3×3 matrix such that $C_A(x) = x(x-5)^2$. Given $Nul(A) = \{(x_1, 2x_1, 0) | x_1 \in R\}$ and $Nul(5I_3 - A) = \{(3x_3, 0, x_3) | x_3 \in R\}$,

- (i) find det(A).
- (ii) Is A diagnolizable? if yes, find a diagonal matrix D and an invertible matrix W such that $W^{-1}AW = D$. If no, explain. No. Since $dim(E_5) = 1$ but 5 has multiplicaty 2. Note $Nul(A) = Nul(-A) = E_0$ and $Nul(5I_3 A) = E_5$
- (iii) Find Trace of A. Adding eigenvalues with multiplicaty. So 5 + 5 + 0 = 10
- (iv) Find $det(A 2I_3)$. We know eigenvalues of $A 2I_3$ are 0 2, 5 2, 5 2. Multiply them we get -18

(v) Let $D = A + 11I_3$. Find a nonzero point in R^3 , say v = (a, b, c), such that $D \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 11a \\ 11b \\ 11c \end{bmatrix}$ Since 0 is an egivalue of A choose a nonzero point v in Nul(A) = E_0 . Since Av = 0v = 0, we have $Dv = (A + 11I_3)v = Av + 11v = 0$

(vi) Given $F = \begin{bmatrix} a & b & \pi \\ c & d & e \\ \sqrt{3} & 8 & f \end{bmatrix}$ such that AF = 5F. Find all entries of F. What is the rank of F. The same idea as

in V. So the column of F must come from E_5 . So set the first column of F, $(a, c, \sqrt{3}) = (3x_3, 0, x_3)$. We get $x_3 = \sqrt{3}$, c = 0 and $a = 3x_3 = 3\sqrt{3}$, now do similar for column II and column III. Since all columns of F are coming from E_5 and $dim(E_5) = 1$, Rank(F) = 1

Faculty information

0 + 11v = 11v.

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com